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Abstract-It is streeeed that theories that relate the intermediate scattering 
function P(@) to its self part PJqt) may imply a relationship between the 
sound wave attenuation coefficient r and the diffusion constant D. The conse- 
quences ofseveralrecent theories ofliquids are examined from this point of view. 
An approximate relation r = MpD/S(o) is thereby proposed, where M is the 
atomic maes, p the number density and S(o) is the long wavelength limit of 
the structure factor. 

1. Introduction 

For monatomic simple liquids the intermediate scattering function is 
defined as 

P(Pt) = (P,(t)P,(O)) (1.1) 

N 

i 
where pq is a density fluctuation given by pc = eiq.ri, and the averaging 

is to be taken with respect to the equilibrium distribution function. "he 
ri's denote the atomic positions. 

Although neutron scattering experiments provide much detailed in- 
formation about the Fourier transform of F(qt), there is no microscopic 
theory which would describe it even qualitatively correctly in terms of 
fundamental quantities like the interatomic potential. Therefore, often, an 
understanding of the intermediate scattering function is sought in terms of 
its self part defined as 

) (1.2) P,(qt) = (eiq . Ir@)-r(O)I 

where r(t) is the position vector of a randomly selected atom a t  the time t .  
What lends impetus to such an approach is the fact that in a neutron 

scattering experiment, S(qw), the Fourier transform of F(pt), and S,(qw), 
the Fourier transform of Pl(qt), are measured independently. They are, 
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254 B. L. OYORFFY AND N. H. MARCH 

respectively, proportional to the coherent and incoherent scattering cros8- 
section that a neutron when scattered by the liquid changes its momentum 
by fiq and its energy by Iw.  Consequently, a theoretical relation between 
P(qt) and Pl($) is amenable to experimental verification. 

The Grst example of the kind of relation sought was given by Vineyard 
(1958) in the form 

Qt) = S(!d (1.3) 

where S(q) is the liquid structure factor. Table 1 gives the various relations 
predicted by more recent theories. To facilitate comparison they are 
expressed in terms of the Laplace transforms: 

It is the purpose of this paper to examine the implications of these 
relations for atomic transport. 

2. Intermediate Scattering Functions and Transport Coefficients 

The Fourier transform of the intermediate scattering functions F(qt) and 
Fa($) are related to the sound attenuation coefficient rt and the diffusion 
constant D by the following Kubo relations 

where 7 and 5 are the shear and bulk viscosities respectively, p is the 
average number density of the fluid and /? = (kBT)-l .  

In what follows i t  will be useful to define the spectral functions 

w4 
s(w)  = Lt - S(qw) 

q- to  a" (2.4) 

$ r as used here is simply $7 + [. aa in (2.2). and therefore is strictly only 
proportional t o  the sound wave attenuation. 
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and to note that while their values at w = 0 are determined by the corres- 
ponding transport CoeEcientS i.e.: 

their integrals are given by sum ~ l e ~  which &qw) and 8 8 ( q W )  must 
satisfy, 88 follows: 

The quantities entering the fourth moment are the pair potential 4(r )  and 
the radial distribution function g(r) .  The fact that one may interchange the 
operations of taking the limit with respect to q and integrating with respect 
to the frequency w is not at all obvious. However, this is discussed in some 
detail in Appendix 1. 

3. Relations between Z ( W )  and S ( W )  

Clearly, if a theory relates F(@)  to Pa(@) and this relationship is valid 
in the hydrodynamic limit (small q, long time) then the implication is that 
the relaxation of F8(qt) determines the relaxation of F(@). Under favorable 
conditions this might lead to a relation between Z ( W )  and s(w) ,  and there- 
fore to a relation between r and D. Indeed such a relation waa suggested 
by Brown and March (1968). They proposed that for liquid metals near 
the melting point 

As is well known, for a dilute gas of hard spheres, the shear viscosity 77 is 
related to D through 

7 -= DMp.  (3.2) 
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INTERMEDIATE SCATTERING FUNCTION 257 

If one attempts to calculate s(w) by using eq. (2.4) for the various 
theories listed in Table 1, one finds that the existence of the q 4  limit 
constitutes a rather severe test for the theory. This limit exists only for 
the Hubbard-Beeby theory and the “phonon” theory (see eqns (3.8) and 
(3.9)). These two give well defined relations between s(w) and z (w)  as 
shown in the third column of Table 1. Evidently, the first three theories 
are not applicable in the hydrodynamic limit. 

Concerning the conditions under which the Kubo limit exists, we can 
say that if the q dependence of the fourth moment is given correctly by 

m 
the theory, the fact that I s(w)  dw is the fourth moment implies that 

-a 

s(w)  is everywhere finite. Satisfying the fourth moment is equivalent to 
conservation of current, which may be Been aa follows. 

The conservation of current j implies that 

j&) = iq - aa(t) (3.3) 

where aa(t) is the stress tensor. Hence 
. .  .. 

p = e q - J  = - a Q aa( t )  * q 
and consequently 

(3.4) 

It is now clear that the current conservation equation implies that 

exists, where uXx is the diagonal element of the stress tensor in the direc- 
tion of q. The first three theories in Table 1 may be shown by direct 
calculation to violate current conservation. 

It may be noted that, a result of the above discussion, we may write 

a relation given earlier by Schofield. 

3.1 ‘‘ PEONON ” TEEORY 

Though the Kerr theory fails to conserve current, it is interesting to 
notice that i t  is simply related to “phonon” theory for which we can find 
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a plausible “Kubo limit”. If we take this theory to be defined by the 
elementary relations 

(3.8) !Ie 
W S ( d  

F(@) = S(q) cos u,& : W: = ___ 

and 

then taking the Laplace transform of (3.9) and inserting this into the third 
entry in Table 1 brings back the Laplace transform of relation (3.8). Thus 
the Kerr theory relates F and Fa given by (3.8) and (3.9) exactly. 

While, from the fourth moment given by Kerr, it is clear that the Kubo 
limit does not exist, we can use the explicit forms (3.8) and (3.9) to show, 
after a short calculation, that 

(3.10) 

From (3.10), (2.5) and (2.6), we clearly regain a relation of the form (3.1). 
However, the use of “phonon” theory in this way requires qualification. 
This theory determines s(w) and z (w)  separately and the relation (3.10) 
could conceivably result from their pathological delta function form. 
Obviously, in “phonon” theory, the sound waves are not damped. How- 
ever, the argument strongly suggests that there may well be a relation 
between F and F8, intimately related to Kerr’s theory, with a Kubo 
limit. 

3.2 HUBBARD-BEEBY THEORY 

We turn next to consider the predictions of the Hubbad-Beeby theory. 
Although the authors point out that their theory becomes inaccurate in 
the hydrodynamic regime, the Kubo limit in fact exists, and as shown in 
Appendix 2, the result we obtain relating the spectral functions is 

s(w) = - z (w)  - aw - BM ” az(w)l aw (3.11) 

Hence the sound wave attenuation is given by 

r = DMp (3.12) 

which is like (3.1), but without the structure factor S(o). Comparison with 
the dilute gas of hard spheres theory given by (3.2) shows extreme 
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INTERMEDIATE SCATTEBINO FUNCTION 259 

similarity. While the similar forms of (3.1) and (3.12) are reassuring, 
nevertheless the difference due to the factor 1/S(O) is quantitatively very 
significant. For liquid metals near the melting point, l/S(O) is in the range 
30-100 and the presence of (l/S(O)) is essential in the relation between r 
and D for even order of magnitude agreement with experiment (cf. Table 3 
of Brown and March). 

The Hubbard-Beeby theory, bearing some relation to the random 
phase approximation, clearly does not take sufficient account of the short 
range order that exists in a dense metallic fluid. It predicts too small 
damping in the hydrodynamic limit. 

3.3 EFFECTIVE MASS TIIEOBY 

It is interesting to note that the somewhat ad hoc procedure of replacing 

Fa(@) by F8(q/d%@, t )  in the relation 

leads to the result 

(3.14) 

which implies a result like (3:l). Such a replacement has been used by 
Skold to improve upon the Vineyard approximation. The result is the 
effective mass theory listed in Table 1. Ideally, one would seek a justifica- 
tion by summing up more terms in the expansion for the response function 
in the Hubbad-Beeby theory. However, we have already stressed that 
the presence of the factor (l/S(O)) in (3.1) is essential for order of magnitude 
agreement with experiment. Clearly, neutron measurements on both the 
spectral functions would be of considerable importance in showing the way 
in which (3.14) will need refinement. 

One other aspect of the theories discussed here needs comment. Within 
the philosophy of relating F to Fa, we should use the exact frequency 
spectrum z(w) in (3.11) and (3.14). This satisfies the relation 

Hence we obtain from (3.14) the result 

(3.15) 

(3.16) 
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Appendix 1 

In  this Appendix, we show that 

( A l . l )  

in an exact theory. Clearly the right-hand-side of this expression is the 
q+O limit of the fourth moment relation. The left-hand-side is equal to 

I B(W) dw if the q 4  limit is interchangeable with the time integration. 

We see no reason with physical situations why this should not be possible, 
though we cannot prove the result rigorously. (The theory of Hubbard and 
Beeby has a structure that does not allow us to make such an interchange). 

Q 

- m  

The intermediate scattering funct,ion F(qt) which satisfies 

yields, on carrying out the differentiations 

(A1.2) 
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262 B. L. OYORFFY AND N. R. MARCH 

If one now passes to the limit t+O, then the averages may be evaluated 
exactly and the result is 

It is now a simple matter to take the q+O limit, and the right-hand-side 
of (2.8) is obtained. 

To take the q+O limit first, we assume that the right-hand-side of 
(A1.3) can be expanded in powers of q. Then we fhd 

where we have not displayed terms like (; (&$2r ( q T ) ) ,  - FAO) which 

are evidently zero due to the spherical symmetry of the problem. 

from (A1.5) that (Al . l )  results. 
Though the detailed terms are different, i t  is straightforward to show 

Appendix 2 

To fhd a relation between S ( W )  and Z ( W )  from 
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INTERMEDIATE SCATTEBIN'Q FUNCTION 

we introduce the Laplace transforms 

and 

Clearly 
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(A2.2) 

(A2.3) 

(A2.4) 

and 

s(w) = Lt Re{&, -iu)}. (A2.5) 

We may now write #&p) and &qp) in terms of &p) and &p) by noting 
that 

!?+a 

1 A 

P8(P1)) = - - ' e i (9 .p)  
P P2 

and 

A S(q) q2 a'-. P(qp) = - - - pSBM + 2 '(qp) 
By substituting these expressions into (A2.3) one obtains 

(A2.6) 

(A2.7) 

P A 

{I + $( 1 - - ?I2 z(w) A +q2-)}]. a39.P) (A2.8) 
P aP 

It is now a matter of simple algebra to calculate Lt Re&, -iw), 

yielding 
!l-m 

A 

!l- aw 

which is the result we wished to prove. 
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